Procedure

In silico design

- 1. sgRNA, primer
 - a. via SnapGene, CRISPOR, NCBI Primer Blast, UCSC Genome Browser

Growth of Human iPSCs (Cell Culture)

- 2. K562 cell lines are used
 - a. Stored in liquid nitrogen
- 3. Growth Medium for K-562 cell line
 - a. RPMI1640
 - b. 10% FBS
 - c. Anti-Anti
 - i. mL per 500 mL of culture medium

Amaxa Nucleofector System

- 4. Electroporation using the Amaxa kit
 - a. 2x35mm plates
 - b. Set the CRISPR/Cas9 components on ice
 - i. sgRNA
 - ii. Cas9
 - c. Wash 1x10⁶, sgRNA and Cas9 in PBS
 - i. Incubate at room temperature
 - ii. Transfer appropriate amount into reaction tube
 - d. Make Cas9/gRNA RNP master mix
 - e. Harvest cells in a flask by trypsinization
 - i. Aspirate media from cultured cells and wash once with PBS
 - ii. Add trypsin solution to cells and incubate until cells release from flask making sure a single-cell suspension is achieved
 - iii. Neutralize trypsin by adding culture media
 - f. Count trypsinized cells
 - g. Transfer cells into a sterile tube
 - i. Centrifuge cells at room temperature
 - ii. Remove as much supernatant with disturbing the pellet wash cells in PBS
 - iii. Centrifuge cells at room temperatures
 - iv. Remove as much supernatant with disturbing the pellet
 - h. Resuspend cells with supplement
 - i. Add RNP master mix
 - j. Transfer solution into Amaxa transfection cuvette
 - i. Make sure there are no air bubbles
 - k. Electroporate
 - 1. Transfer cells into 2x35mm plated

- i. 1 plate for analysis
- ii. 1 plate for monoclonal isolation

Validation of deletion

- 5. Use 1 of the 35mm plates for validation
 - a. Detach the cells
 - i. Aspirate medium
 - ii. PBS wash
 - iii. Incubate
 - b. Isolate genomic DNA (gDNA)
 - c. Purify DNA
 - d. Test for presence of positive clones
 - e. If the cell pool contains no positive clones
 - i. Repeat transfection adjust Cas9/gRNA RNP master mix
- 6. Further incubation of second 35mm plate
 - a. Check for appropriate colony size

Identification of positive clones

- 7. Use one of the plates to identify positive clones
 - a. Freeze the other well plate
 - b. Detach cells
 - i. Aspirate medium
 - ii. PBS wash
 - iii. Incubate
 - c. Isolate each gDNA
- 8. Thaw second 96 well plate
 - a. Discard negative clones
 - b. Transfer each clone to 35mm plate
 - c. Grow the positive clones
 - i. Passage the cells

Test for expression

- 9. TSHR expression
 - a. Immunohistochemistry/immunostaining
 - b. qPCR
 - c. Western blot
- 10. Off-targets
- 11. Karyotypic changes (reveals changes in chromosome number associated with aneuploid conditions)

Differentiation of Human iPSCs into Definitive Endoderm and of TFCs

• As thyroid development progresses via definitive endoderm

- o Human iPSCs were cultured in medium supplemented with Activin A
- TSH is important for thyroid development
 - o After TSHR mRNA expression was observed in cells check if the cells have the potential to differentiate into TFCs at this time point with TSH treatment
- Cultivate human iPSCs obtain the deletion in these and differentiate them subsequently into TFCs using the compounds